
Messaging Performance 
Testing: tips, tricks and 

tools
Otavio Rodolfo Piske <opiske@redhat.com>



About the talk
● Basics
● Tips, tricks and anti-patterns
● Tools
● Tweaks



About me
● Software Engineer in Test at Red Hat Messaging QE team
● Working with messaging for ~10 years

○ About 7 of those with IBM WebSphere MQ
○ Mostly with C/C++ and Java

● Social media:
○ Twitter: @otavio021
○ Github: orpiske
○ Site: http://www.orpiske.net 

http://www.orpiske.net


What this talk is not about
● Tuning code or brokers for performance
● Tuning OS for messaging
● Demo



Why performance is important
● Cost
● User experience
● IoT and embedded devices
● Business:

○ Business opportunities (ie.: charge by transaction)
○ Enforced by contracts
○ Law and other regulations



Definition of performance
● Latency

○ One way
○ Round-trip

● Throughput
○ Sustained throughput

● Resource usage
○ CPU
○ Memory
○ I/O



Messaging QE testing
● Past
● Current
● Future



Messaging QE testing: past
● Spec JMS
● No history
● No standards



Messaging QE testing: current
● JBoss A-MQ 6 (Apache ActiveMQ)

○ JBoss A-MQ 7 (Apache Artemis) in progress
● Protocols: AMQP 1.0
● 2 message sizes
● 2 broker configurations
● Performance DB



Messaging QE testing: future
● Multi-protocol iteration
● CI integration

○ Performance gating
● Explore performance on containers
● Upstream contribution



Messaging performance testing
● Anti-patterns
● Tips
● Tricks



Anti-patterns
● Lack of objective or performance goal
● Short testing duration

○ Broker warm up
○ JVM: GC hit

● Lack of baseline
● Lack of (evolutionary) history



Tips
● Define a goal
● Define a reasonable duration

○ At least 3h for non-critical systems
○ Much for for mission critical

● Measure your system
○ Network performance
○ Database performance (if applicable)

● Execute more than once
○ Establish baselines: broker, network, system



Tricks
● Be gentle: don't flood the broker at once
● Understand real-world usage scenarios

○ Development/testing lab vs. real-world
■ Network congestion
■ Different resource capacity

● Messaging protocol differences
● Botlenecks

○ Application
○ Database
○ Network
○ JVM
○ OS or other environment



Messaging performance testing tools
● MPT: msg-perf-tool
● MPT UI: msg-perf-ui
● BMIC
● Others

○ PBench
○ Quiver



MPT: msg-perf-tool
● Multiprotocol: 

○ AMQP 1.0
○ STOMP 1.2
○ MQTT 3.1 and 3.1.1

● Performance testing
● Tune "guessing"
● ElasticSearch DB
● Apache 2.0

○ Source and RPMs: http://orpiske.github.io/msg-perf-tool/

http://orpiske.github.io/msg-perf-tool/


MPT UI: msg-perf-ui
● Responsive Web UI
● AngularJS
● ElasticSearch front-end
● Metrics:

○ One-way latency
○ Latency percentiles
○ Sender/receiver throughput

● MIT license
○ Source: https://github.com/orpiske/msg-perf-ui 

https://github.com/orpiske/msg-perf-ui


BMIC: broker management interface client
● A client for REST management interface

○ JBoss A-MQ 6
○ JBoss A-MQ 7
○ Apache ActiveMQ
○ Apache Artemis

● Components
○ Shared library
○ A CLI management tool

■ Broker top
● Apache 2.0

○ Source: https://github.com/orpiske/bmic

https://github.com/orpiske/bmic


BMIC: broker management interface client



PBench
● A performance test framework
● Test orchestration
● Test post-processing
● GPL 3.0

○ Source and packages: http://distributed-system-analysis.github.io/pbench/

http://distributed-system-analysis.github.io/pbench/


Quiver
● A set of tools for testing messaging clients and brokers
● Developed by Qpid Proton Developers
● Focused on AMQP 1.0 clients/brokers

○ Some JMS implementations available
● Apache 2.0

○ Source: https://github.com/ssorj/quiver/

https://github.com/ssorj/quiver/


Tools: tweak
● msg-perf-tool

○ VMSL
○ Content Loader



Tools: tweak
● BMIC

○ Transports
○ Products



Tools: future
● Other products and protocols

○ AMQP 0-9-1 (RabbitMQ)
○ WebSphere MQ
○ Openwire
○ Others

● Improve extensibility
○ Probes
○ Improved resource usage metrics

● Improve coverage:
○ JMS client support

● AMQP management



Tools: future
● Leverage existing metrics collection/management tools

○ Hawkular, grafana, prometheus, etc
● Leverage other tools



Closing comments
● Lots of room for improvements
● Industry tools for messaging performance are retired
● Opportunity for the community to work together


